ROOT DETERMINED NODULATION1 Is Required for M. truncatula CLE12, But Not CLE13, Peptide Signaling through the SUNN Receptor Kinase1[OPEN]
نویسندگان
چکیده
The combinatorial interaction of a receptor kinase and a modified CLE peptide is involved in several developmental processes in plants, including autoregulation of nodulation (AON), which allows legumes to limit the number of root nodules formed based on available nitrogen and previous rhizobial colonization. Evidence supports the modification of CLE peptides by enzymes of the hydroxyproline O-arabinosyltransferase (HPAT/RDN) family. Here, we show by grafting and genetic analysis in Medicago truncatula that, in the AON pathway, RDN1, functioning in the root, acts upstream of the receptor kinase SUNN, functioning in the shoot. As expected for a glycosyltransferase, we found that RDN1 and RDN2 proteins are localized to the Golgi, as was shown previously for AtHPAT1. Using composite plants with transgenic hairy roots, we show that RDN1 and RDN2 orthologs from dicots as well as a related RDN gene from rice (Oryza sativa) can rescue the phenotype of rdn1-2when expressed constitutively, but the less related MtRDN3 cannot. The timing of the induction of MtCLE12 and MtCLE13 peptide genes (negative regulators of AON) in nodulating roots is not altered by the mutation of RDN1 or SUNN, although expression levels are higher. Plants with transgenic roots constitutively expressing MtCLE12 require both RDN1 and SUNN to prevent nodule formation, while plants constitutively expressing MtCLE13 require only SUNN, suggesting that the two CLEs have different requirements for function. Combined with previous work, these data support a model in which RDN1 arabinosylates MtCLE12, and this modification is necessary for the transport and/or reception of the AON signal by the SUNN kinase.
منابع مشابه
ROOT DETERMINED NODULATION1 Is Required for M. truncatula CLE12, But Not CLE13, Peptide Signaling through the SUNN Receptor Kinase.
The combinatorial interaction of a receptor kinase and a modified CLE peptide is involved in several developmental processes in plants, including autoregulation of nodulation (AON), which allows legumes to limit the number of root nodules formed based on available nitrogen and previous rhizobial colonization. Evidence supports the modification of CLE peptides by enzymes of the hydroxyproline O-...
متن کاملThe autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport.
We tested whether a gene regulating nodule number in Medicago truncatula, Super Numeric Nodules (SUNN ), is involved in root architecture responses to carbon (C) and nitrogen (N) and whether this is mediated by changes in shoot-to-root auxin transport. Nodules and lateral roots are root organs that are under the control of nutrient supply, but how their architecture is regulated in response to ...
متن کاملMultiple Autoregulation of Nodulation (AON) Signals Identified through Split Root Analysis of Medicago truncatula sunn and rdn1 Mutants
Nodulation is energetically costly to the host: legumes balance the nitrogen demand with the energy expense by limiting the number of nodules through long-distance signaling. A split root system was used to investigate systemic autoregulation of nodulation (AON) in Medicago truncatula and the role of the AON genes RDN1 and SUNN in the regulatory circuit. Developing nodule primordia did not trig...
متن کاملThe ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family.
The formation of nitrogen-fixing nodules in legumes is tightly controlled by a long-distance signaling system in which nodulating roots signal to shoot tissues to suppress further nodulation. A screen for supernodulating Medicago truncatula mutants defective in this regulatory behavior yielded loss-of-function alleles of a gene designated ROOT DETERMINED NODULATION1 (RDN1). Grafting experiments...
متن کاملRNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development.
Changes in cellular or subcellular Ca2+ concentrations play essential roles in plant development and in the responses of plants to their environment. However, the mechanisms through which Ca2+ acts, the downstream signaling components, as well as the relationships among the various Ca2+-dependent processes remain largely unknown. Using an RNA interference-based screen for gene function in Medic...
متن کامل